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Note that typically we have
| ORD-OUT(SO, S) = >SYNT-OUT(SO.S) = SERR-OUT(SO,

IV. CONCLUSION

~ This correspondence attempts to formalize the use of executable
wertions in the detection of and recovery from errors in programs,

y introducing (respectively) the notions of self-checking programs

self-stabilizing programs.

A formal verification system is provided, which enables one to

formally verify that a given program is self-checking. The self-

checking property of a program can be viewed in two ways as fol-

OWS.

« first, as the ultimate property of an asserted program,

i: « second, as an economical alternative to correctness. When a

| program is so complex that its proof of correctness is unreasonably

| expensive, one may want to prove instead that the program is self-

?ﬁg‘:ﬂqcking by proving that its frame of assertions is correct in the sense

| defined in this correspondence. A frame of assertions is typically much
| shorter than the asserted program that it supports.
| Self-stabilizing programs are derived from self-checking programs
| by adding a recovery capability and much of the results and tools
| derived for self-checking programs apply to self-stabilizing programs.
| The total recovery and the various philosophies of partial recovery
[ are discussed, and the relationship between the “power” of the re-
covery routines and the overall quality of the program is shown. More

research is under way concerning this relationship.
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The Containment Set Approach to Upsets in Digital Systems
ROBERT E. GLASER AND GERALD M. MASSON

Abstract—Fault analysis of digital systems is highly dependent upon the
fault model employed. Much previous work utilizes fault models known to
contain inaccuracies in order to permit ma thematically tractable analysis. In
this correspondence a new approach is taken which combines faults, hardware,
and software together into one overall model. This new model is shown to be
useful for the consideration of intermittent /transient faults. It supports a new
method, based on the novel concept of a containment set, for realizing transient
fault tolerance without massive redundancy. It also allows for a new approach
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to system fault folerance evaluation and validation which uses a transition
matrix which is defined in terms of the containment set.

Index Terms—Containment set, control system, error, fault, fault tolerance,
transition matrix, upset.

I. INTRODUCTION

In this correspondence the effects of intermittent and transient
faults on digital systems are considered. In particular, a theory is
developed which can be directly applied to microprocessor based
control systems. Several approaches to fault-tolerant microprocessor
design have been reported in the literature. For example, the use of
CPU modifications to enhance fault detection is described in [1]. This
self-checking VLSI microprocessor detects internal faults and flags
external circuitry, which can then initiate recovery. Variations of the
6800 CPU which can detect invalid op-code fetches have been pro-
duced. Discussion of the effectiveness of such limited detection
mechanisms can be found in [2] and [3].

Probably the simplest and most prevalent external hardware ad-
dition used for fault detection is a watchdog timer. In normal oper-
ation, the microprocessor periodically pulses the external timer. The
software is written such that the processor is guaranteed to pulse the
timer before a specified time elapses. The timer is retriggerable, so
that under normal operation it never times out. Should the processor
fail to trigger the watchdog within the allotted time period, the timer
initiates recovery action, which can be as simple as resetting the
processor, or as complex as calling a test program which thoroughly
exercises the entire system and logs the results. A watchdog timer
implementation can be found in [4], and discussion of the effective-
ness of watchdog timers can be found in [2] and [3].

Triple modular redundancy (TMR) has been applied to micro-
processors. This form of massive redundancy provides more effective
recovery than the simpler, less costly schemes. A TMR design around
the 8080 CPU is described in [5]. Determining the optimum points
to place voters is not a simple task. Memory can be treated in a variety
of ways with regard to voter placement, and voter reliability is critical.
Reliability improvement with various connections is reported in
[6].
The goal of this correspondence is to describe an alternative ap-
proach to fault modeling leading to a new tolerance method which
does not utilize massive redundancy, yet provides provable tolerance
to intermittent and transient faults.

I1. UpsET MODELING

A particularly elusive problem relevant to the area of fault-tolerant
computing is that of obtaining a useful and accurate fault model.
Detailed models of specific fault sources tend to have little application
to overall system behavior prediction, and general mathematically
tractable fault models bear little resemblance to real world situations.
The approach to be taken in this correspondence is to model the entire
digital system consisting of the original fault-free system with the
addition of faults. Instead of attempting to combine two independent
models—the system model and a fault model—an integrated view
will model them as a single entity.

A. Faults, Errors, and Upsets

Eailures are circuit related, and are due to problems such as opens
and shorts. Intermittent failures are caused by the combination of
internal failures and external stimuli, causing the circuit to inter-
mittently operate improperly. These circuit failures lead to faults,
errors, and upsets.

Faults: A fault is a logical difference at the site of a circuit failure
between faulty and fault-free devices [7]. An intermittent fault is,
in part, due to a physical failure, and is expected to make transitions
between active and inactive states during the lifetime of the equip-
ment. A fransient fault is not duc to a circuit failure, but an envi-
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ronmental condition which the equipment was not designed to tol-
erate. This is sometimes referred to as 2 malfunction [8].

The fault classes of concern here are intermittent and transient
(I/T) faults. Since these faults are caused cither in part, or totally,
by environmental factors, the source of faults is considered to be the
hostile environment. Information at this fault source level is not
digital, but analog in nature. For example, the actual fault source can
be an internal logical signal modification such that it satisfies neither
the logic high nor low digital requirements. In such a case, it is not
possible, in general, to predict how a digital circuit will react.
Moreover, while the digital circuit is a clocked, synchronous digital
system, the actual faults caused are seldom “well behaved” in the
sense that the fault is only synchronously active or inactive with
system clock. The well-behaved assumption greatly simplifies pre-
dictions of the fault’s operational implications, but clearly does not
reflect real situations.

Errors: An incorrect logic value at a fault site propagates to other
parts of the circuit. These logic differences between faulty and
fault-free systems are called errors, with the implication that an error
at a failure site is called a fault. Errors can be considered on all lines
of a circuit; they appear on all differing lines between faulty and
fault-free units internal to the control system itself.

It has been seen that the fault level is not useful as a description
of fault/system interaction in complex digital circuits because ob-
servation is not possible at this level. The error level is one step re-
moved from the fault level. An I/T fault can cause a state change in
the digital system. A continuous string of errors can result if the faulty
circuit is not forced into the correct state, that of the fault-free circuit.
Simple loss of synchronization will yield endless errors, after the I /T
fault has disappeared.

In modern digital systems, consisting of LSI integrated circuits,
all circuit lines are not accessible; only pins of the packages are ob-
servable. In the attempt to find the lowest observable level from which
to view faults, a complete description of errors is not usable, since most
of these observation points are not available. A subset of circuit lines
are available, but even accepting error propagation latency the con-
ventional definition of error suffers from the loss of synchronization
problem. To make errors a useful point of observation, a new defini-
tion is made such that logic signal differences at the observation points
between faulty and fault-free systems will only be interpreted as errors
when the digital system is actually being driven by a fault. If a set of
logic signal differences are observed over one clock cycle, then an error
will be noted over the next clock cycle only if there are logic signal
differences at the observation poinis between the faulty circuit and
a fault-free circuit which has been forced into the exact same state
as that of the faulty circuit at the end of the previous clock cycle.
However, as will now be discussed, the upset level is a more useful
perspective for the goals of this research.

Upsets: A digital system is designed to perform some function. The
primary concern is how faults affect the performance of the design
function. The presence of faults perturbs the system or “upsets”it.
The viewpoint which observes fault effects at this higher, functional
level, will be referred to as the upset level. The transfer function de-
scribed by the system outputs, in relation to the signal inputs, is the
observation point for the upset level.

At the upset level, a system is viewed as responding to the arrival
and departure of an I/T fault in two stages—the same as standard
system theory separates a general system’s response to any input. This
system’s response to the I/T fault input will be the same as any other
system'’s response to an input: there will be components both of the
transient response and the steady-state response. The difference here
is that with standard system theory, the steady-state response is due
to a driving input, which remains, and the transient response is due
to the system’s response to the input change. In the case of the control
system’s response to I/T fault inputs, the /T fault arrives and then
disappears. In the purest sense then, the system'’s response would be
composed entirely of the transient response with no steady-state re-
sponse. However, for this digital system driven with 1/T fault inputs,
state changes can cause lasting effects on the system after the de-
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parture of the 1/T fault. These effects will be classified as steady-state
effects at the upset level. Fault effects present during and shortly after
the time when the system is being driven by the 1/T fault will ap-
propriately be called transient effects. (The word “transient” here
is used differently from that in the term “transient fault.”” There can
be both “transient” and “steady-state” responses to a single “transient
fault.” The single word “transient” is retained in this correspondence
for each of these separate meanings because both are in agreement
with standard usages.)

It is possible to observe transient and steady-state effects of 1/T
faults because of the functional interpretation of the upset level.
Typically, transient responses are incorrect data values, loss of time
or synchronization, or skipping a computation step. For example,
consider a digital control system behaving partially as a moving av-
erage filter; the outputs depend primarily on current and recently
applied inputs. Effects of an input disappear with time. For this type
of control system, transient output perturbations due to an I/T fault
will also vanish over a period of time. This will be true only if the
system function remains unchanged by the fault.

Steady-state responses are functional trans formations. After the
departure of the I/T fault, the system is no longer performing the
same transfer function between its signal inputs and outputs as prior
to the I/T fault arrival. For the moving average filter example, a
steady-state response to an I/T fault modifies the filter algorithm.
Since the filter may no longer be a moving average type at all, there
can be no expectation that output perturbations will disappear with
time; in fact, with a function change the fault effects will not disap-
pear.

A sophisticated control system could monitor internal states and
external events to determine if I/T faults have caused a transient
effect on data processing, and initiate recovery procedures when de-
tected. Transient system responses can be tolerated in this fashion.
Steady-state system responses to an I/T fault would transfer execu-
tion from the control algorithm, after which there would be no rea-
sonable hope for system recovery. Because of the relatively drastic
consequences of a single I/T fault that the steady-state fault response
can show at the upset level, as compared with the transient response,
only the steady-state effects of 1/T faults will be considered here,

B. Containment Sets

To concentrate on the steady-state fault response of a digital sys-
tem, the system’s functional 1/O relationships must be characterized,
When the operation of the system can be completely described in
terms of a finite set of mutually exclusive functional states covering
all possible transfer functions, this set of functional states will be re-
ferred to as the containment set. All possible system states must cause
functional operation of one of the elements of the containment set.
This set must include all possible valid functional states of the
fault-free system, but this set must also include invalid functional
states, not explicitly designed into the system but into which the
system can nevertheless be driven by an I/T fault. Ignoring transient
effects of /T faults, the steady-state effects can be described in terms
of the containment set; and this set is completely defined by the
structure of the fault-free system. No fault information or conven-
tional system fault analysis is needed to obtain the containment set.
This advantageous condition is a result of not considering solid
(permanent) faults, and then ignoring the transient effects of the
remaining faults. Nevertheless, this containment set is the basis for
the analysis of lasting effects of 1/T faults, and the likelihood of
practically determining containment sets can be seen to be promising.
It is not at all clear that a finite containment set exists for all digital
systems; indeed, in general, this is not true. However, it has been found
that although some system modifications may be necessary to produce
a useful, finite containment set, these modifications are not necessarily
overly restrictive [9].

Therefore, the steady-state fault response can be described in terms -

of the containment set, and the transitions between elements of this
set are of acute interest.
Transition Matrix: While it is clear that the types of I/T faults
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have no bearing on the makeup of the containment set, nevertheless
the faults do induce the transitions among the functional states in the
set; hence, there is no expectation that the fault types do not affect
these transitions. However, for a given fault class, a transition marix
T = [py;] can be used to specify the probabilities of each of the tran-
sitions. Let the containment set be {L} =1Lo, Ly, ** Ly=1}. Then the
entry pij in T gives the probability of a transition from containment
state L, to containment state L;, given that an error is detected. The
{ransition matrix will be dependent upon the choice of observation
points for the detection of errors.

" Thus, a linear difference equation defines the functional state be-
havior of the system

Lik+ 1) = TL(k), where L(k) is a column vector

polk)
pi(k)
r:—l(k)

| such that p; (k) is the probability of the digital system being in con-
| tainment state L; € (L} after k upsets. If Ly were the known initial
| state, then after k upsets the functional state probabilities are given

by

T =YY

L{k) =

—

1
0
Lk)=Tk0

0

More generally, if the system starts with initial functional state L,
with probability p,, then after k upsets the functional state proba-

bilities are given by
Po
=1 " |-
Pn-—l

It can be seen that knowledge of the transition matrix allows a
probabilistic description to be made of the functional state traversal,
given the initial state. Given the digital system, its containment set,
a set of error observation points, and a class of 1/T faults, the tran-
sition matrix can be measured experimentally. Possibly, methods can
be developed which produce the transition matrix with minimal ex-
perimentation. Regardless of how it is actually generated, once ob-
tained it provides a totally new dimension to I/T fault analysis.

System Validation: The transition matrix can be used to assess the
I/T fault tolerance of various implementations of functional re-
quirements for a given system. As a simple illustration of this, suppose
that for a given I/ T fault environment, all that is of interest is the
result of a single upset in a digital system. Suppose further that in the
containment set {L] there is only one valid functional state L. Then
the entry in the first column, first row of T gives the probability of
the system remaining in Lo, given an error. Comparing this entry in
T for different versions of functionally equivalent implementations
provides a measure of their fault tolerance. Fig. 1 shows state tran-
sition diagrams for two possibilities for T for the simple ¢ase where
there is only one invalid functional state. For the implementation
corresponding to Fig. 1(a)

T+ = [3/4 15/16
1/4 1/16
and for the implementation corresponding to Fig. 1(b)
I 18
1/8 1/8

Obviously, T*#* is the more transient fault-tolerant implementation
for single upsets. Suppose, however, that the situation was changed
such that a large number of upsets were likely. Now T* for large k
becomes important. Interestingly,
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34

15/16

(a)

18

I
7/8 ;
1/8
(b)

Fig. 1. Two 2-loop implementations. (a) T*. (b) T#%,

: 15/19 15/19
1 T* k =
AT [4/19 4/19]
and
: : 1/2 1)2
] TH*)Vk = ;
(O [1/2 1/2}
Hence, T* is the more fault-tolerant implementation for a multiple
upset environment. ‘

This example serves to show that system comparison for fault
tolerance may not supply an answer which is correct for all situations.
Environmental, task, and mission time considerations must be taken
into account with the use of transition matrices and the associated
containment sets. This approach is a very useful analysis, evaluation,
and validation tool.

IIl. FAULT TOLERANCE

The approach to 1/T fault analysis through the ideas of the con-
{ainment set and the transition matrix suggests and makes feasible
a new method for obtaining fault tolerance in digital systems. The
system can be modified in the attempt to improve its behavior in the
presence of faults, indicated by the transition matrix. If the system
is not overly complex, there is the possibility of modifying it so that
all valid functional states can be removed from the containment set.
If this can be done, the transition matrix reduces to the scalar value
1, and no upset or series of upsets can possibly remove the digital
system from its intended function. The one clement of the contain-
ment set corresponds to proper system operation; no other functional
operations are possible. All steady-state efl fects of 1/T faults disap-
pear.

The transient effects of 1/T faults are of importance, and much
theoretical research has been done into the prediction and measure-
ment of error latency times, chiefly for use in determining state vector
storage periods for duplex redundant systems, It is clear that it is
impossible to eliminate or mask transient effects of 1 /T faults without
massive redundancy. For the many applications where duplication
or triplication of equipment is not desired but where some degree of
fault tolerance is required, the steady-state approach of transition
matrix analysis can be used very effectively. In these cases, temporary
interruptions of control or data values must be acceptable, as long as
proper control returns within a reasonable - period of time. The
steady-state fault effects are seen to be much more important than
transient effects.
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This approach to fault tolerance in digital systems is quite different
form the usual methods. Normally, there is an error detection pro-
cedure which is monitored, and when detection occurs a set of re-
covery procedures are called. With the containment set approach
there is neither a detection mechanism nor a recovery procedure. The
fault tolerance results entirely from the structure of the system itself.
It is assumed that the system will experience a period of errors when
subjected to I /T faults; this is accepted, but the system is constructed
so that it will return within finite time to its original function. There
is no error masking—the tolerance is an inherent part of the de-
sign.

In general, because of system complexity, creating a single element
containment set may be a task which is not possible or too difficult
to achieve. However, there is a large class of digital systems for which
this approach is indeed viable: namely, microprocessor controllers.

Removing all invalid elements from the containment set guarantees
that eventually the system will return to the design function, but says
nothing about how much time can elapse before task resumption. An
analysis of specific systems can be done to minimize this recovery time
and to obtain an upper limit for it. This can be done by examination
of each system state which can cause a delay. Modifications of these
states can lower the recovery times.

IV. CONCLUSIONS

The principle requirement for practical system application is
finding a set of operational states which are complete, mutually ex-
clusive, and finite, to allow use as a containment set. This allows
digital system fault phenomena to be viewed through a high level
upset perspective. This integrated approach to the fault/system/
program complex can then yield provable, yet useful, design and
validation techniques, !

Upset theory has been applied to microprocessor controllers, and
methods to obtain containment sets for 8085-based systems developed
[9]. A testbed system was used to verify the practicality for the im-
plementatior of crash-proof controllers based on upset theory. This
new method has been found to be far superior to the conventional
watchdog timer method for applications where the need for fault
tolerance is not eritical enough to warrant an expensive approach such
as TMR. The cost increase for fault tolerance is approximately the
same as that of the watchdog timer method.

Microprocessor controllers are small enough that it is possible to
reduce the containment set to valid states by removing all erroneous
states. Larger systems most likely will not offer this luxury. The
containment set would then categorize the various erroneous states
which are not removable, and the fullest use of transition matrices
would be made. The application of upset theory to the design of
transient fault-tolerant microprocessor controllers is just one of its
uses in the field of transient fault analysis.
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The Design of a Reliable Remote Procedure Call Mechanism
S. K. SHRIVASTAVA anD F. PANZIERI

Abstract—In this correspondence we describe the design of a reliable Remote
Procedure Call mechanism intended for use in local area networks. Starting
from the hardware level that provides primitive facilities for data transmission,
we describe how such a mechanism can be constructed. We discuss various
design issues involved, including the choice of a message passing system over
which the remote call mechanism is to be constructed and the treatment of
various abnormal situations such as lost messages and node crashes. We also
investigate what the reliability requirements of the Remote Procedure Call
mechanism should be with respect to both the application programs using it
and the message passing system on which it itself is based.

Index Terms—Atomic actions, data communication, distributed systems,
fault tolerance, local area networks.,

I. INTRODUCTION

In this correspondence we describe the design of a reliable Remote
Procedure Call (RPC) mechanism which we have been investigating
within the context of programming reliable distributed applications.
In the following we consider a distributed system as composed of a
number of interacting “client” and “server”™ processes running on
possibly distinct nodes of the system; the interactions between a client
and a server are made possible by the suitable use of the RPC
mechanism. Essentially, in this scheme a client’s remote call is
transformed into an appropriate message to the named server who
performs the requested work and sends the result back to the client
and so terminating the call. The RPC mechanism is thus implemented
on top of a message passing interface. Some of the interesting prob-
lems that need to be faced are: 1) the selection of appropriate se-
mantics and reliability features of the RPC mechanism, 2) the design
of an appropriate message passing interface over which the RPC is
to be implemented, and 3) the treatment of abnormal situations such
as node crashes. These problems and their solutions are discussed in
this correspondence. We shall concentrate primarily on the relevant
reliability issues involved, so other directly or indirectly related issues
such as type checking, authentication, and naming will not be ad-
dressed here.

The RPC mechanism described in the following has been designed
for a local area network composed of a number of PDP 11/45 and LSI
11/23 computers (nodes) interconnected by the Cambridge Ring [1];
each node runs the UNIX! (V7) operating system. However, most
of the ideas presented in this correspondence are, we believe, suffi-
ciently general to be applicable to any other local area network
system.
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